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To account for possible distinct functional roles played by different nodes and links in complex networks, we
introduce and analyze a class of weighted scale-free networks. The weight of a node is assigned as a random
number, based on which the weights of links are defined. We utilize the concegtveéennes® characterize
the weighted networks and obtain the scaling laws governing the betweenness as functions both of the weight
and of the degree. The scaling results may be useful for identifying influential nodes in terms of physical
functions in complex networks.
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Complex networks arise in many natural systems of fun-etwork. In general, we write the betweennessBas, k),
damental importance and they are also an essential part gfith the correspondingmarginal betweennessesB,,(w)
mo_dern societ;[l—G]; examples o_f the former are many bio-_ :flj(_maxB(W’k)dk and BK(k)zf})B(w,k)dw, wherekqy<® is
logical networks while the latter include the Internet, electri-ina maximum number of links of node in a finite but large
cal power grids, transportation networks, etc. Studies Ofatwork. Our main results are the following) The weight-

complex networks have become a recent field of tremendoyg, e petweenness obeys the following exponential scaling
interest since the discoveries of the small-wdifg and the relation:

scale-free propertief8].
A basic assumption in most existing works on complex By(w) ~ Ne" for largew, (1)
networks is that all links and nodes are identical in terms of
their functional roles in the networf9]. This assumption where the exponential ratescales withm, the average num-
may not be valid for a realistic network because differentber of new links acquired by the network, &s m? (¢ is a
links and nodes can contribute differently to the overall perconstant (2) The link-based betweenness obeys the follow-
formance of the networkl0-14. For instance, in a neural ing algebraic scaling law:
network, links, which are dendritic connections, can have
very different capabilities in terms of transmitting electrical By (k) ~ k*, (2
signals. Nodes, which are neurons, can also have different i ,
electrical and chemical properties and thus be very distinct if’heré I<a<2. SinceW andK are independent random
terms of their abilities to process information. In the Internet,variables, we hav&(w, k) ~ Ne <"k for largew andk. Sup-
the capabilities to process and transmit information of com{Pose nodes with large values of betweenness are more influ-
puters(nodes can have a wide distribution. It is thus impor- ential, result(1) implies that, due to the natural process of
tant to studyweightedcomplex networks in which nodes and evolution of the network, nodes with large values of weights
links are not treated on equal footing. Although the need tanay be less influential. On the other hand, nodes with large
study these more realistic networks has been pointed owalues ofk are generally more influential, as can be expected
recently[4,13,14, so far there has not been much work in intuitively.
this direction. Scale-free networks are characterized by algebraic behav-
In this paper, we introduce a class of weighted scale-freéor in the degree distributioR(k). This property isdynamic
networks. In such a network, each node is assigned a randobecause it is the consequence of the natural evolution of the
weight, which is the realization of random variabl¢ in network. The ground-breaking work by Barabasi and Albert
[0,1]. Given a pair of nodes with different weights, the [8] demonstrates that the algebraic behavior is due to two
weight of the link connecting them can be defined accordbasic mechanisms: growth and preferential attachment,
ingly. Our interest is to develop proper characterizations ofvhere the latter means that the probability for a new node to
such weighted networks. For this purpose we use the concepe connected to an existing node is proportional to the num-
of betweennessf a node, first proposed by Newmah3], ber of links that this node already has.
which is the total number of optimal patfito be defined Our weighted scale-free network is constructed as fol-
below) between any pairs of nodes passing through thidows. We first generate a regul@nonweighteg scale-free
node. Given a random distribution of weights in the network,network based on the Barabéasi-Alb&A) model[8,17]. In
our question is how the betweenness scales with the weiglp@articular, we start with a small numberof nodes and add
w. A related issue concerns the scaling relation between the new node withm links at each time step following the
betweenness ank] wherek is the realization of the degree preferential attachment rule, while allowing only one link
variableK that measures the number of links of node in thebetween any pair of nodes. Aftér(large time steps, we
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obtain a network withN=t+m nodes and\,=mt links. To

convert this nonweighted scale-free network into a weighted

one, we choose a nodeat random and assign the number
“1” to it, then randomly choose another nogamong those

that do not yet have assigned numbers, and assign the nun 10°

ber “2” to this node, and continue until all nodes are assigne
a numberbetween 1 andll). The weight of a node is defined
to be its assigned number divided By which is a fractional
number between zero and unity. The weightof a link Ij;
connecting a pair of nodeg and j) is defined to bed;
=(w;+w;)/2. The weightd;; associated with the link; may
be interpreted, in a computer network, for instance, as th
time required to transfer a data packet through this link.
Recall that the betweenness of a nodethe total number
of optimal paths between all pairs of nodes that pass throug
the node. Given a particular pair of nodes, sayandB, the
optimal path is one that minimizes the SLEﬁdij. The opti-
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FIG. 1. (a) Scaling of the betweenne8g,(w) with w for m=2,
?LO, and 20 for a weighted scale-free networktNef4000 nodes. For
each value ofn, the data were averaged over 5000 runs. The slopes
of three lines are approximately —3.3, —17.7, and —33.0nfier2,

|10, and 20, respectivelyb) Dependence of on m.

has been verified numerically. We then haBg(w)=c;N

mal path between a pair of nodes is in general different fronFconst>1. In general, ifB,/(w)>1, the probability that

the shortest path connecting th¢i8]. To obtain the scaling
law (1), we assume that nodéas weightv and letS denote
the optimal path betweeA and B that passes through this

some optimal paths do pass through a node with weigist
close to one. Thus, fan=1 andN> 1, we haveB(w)>1,
indicating that many optimal paths pass through every node

node. Say an infinitesimal increase occurs in the weight ofn the corresponding weighted scale-free network. For

the node fromw to w+dw, while the weights of all other
nodes in the network remain unchanged. Then there is
probability that the pathS is no longer an optimal path

=2 so that the resulting network possesses closed loops,
aptimal paths passing through a nodean disappear with
nonzero probability. In this case, we expd&gf(w)<1 for

throughi because the increase of the weight makes the optilarge values ofv. There is thus a nonzero probability that no

mal path length_g larger bydw than before. If there exists at
least one optimal path whose length is betwégrand Lg
+dw which does not pass through nodeefore its weight is
changed, then aftatw increase in weight this new path can
become the optimal path betweénand B. Let { be the
probability that an existing optimal path disappearst the
nodei when its weight increases from to w+dw. As this

optimal path exists through a node. et be the value ofv

for which B(w)=1, we havew,=In(c,N)/{. Let N; be the
value ofN for which ¢, Ne¢=1. If N> N(=€‘/c,,), we have
Bw(w)>1 for all values ofw becausew,>1. However, if
N <N, By(w) <1 may happen for large. For instance, for
m=2 we find numerically that,=15 and{=3.25, which
givesN.=2. Form=10 andN=4000, we obtairc,y= 155,

probability is determined by whether there is at least ong~17.7, andw,=0.75. There must then be many nodes

optimal path of length betweehs<L<Lg+dw in the
weighted network, we see th@tdoes not depend on the

through which no optimal paths pass.
Note that Fig. 1 is obtained with uniform distribution of

value ofw and it can be regarded as a constant. Apparentlyyeights. Does the exponential scaling of the betweenness
¢ will change if the network topology is altered. For instance,with weight depend on this distribution? To answer this ques-

if the total numbem of nodes in a weighted scale-free net-

tion, we consider Gaussian weight distribution. In particular,

work is fixed, there are generally many more paths connectfor each node, a random numbgis drawn from the stan-

ing two nodes with larger total numbBk of links than those
with a smaller valueN,. Thus we expect to increase with
N;, which can be verified numerically. Givef the decrease
in the betweenness of a nodeis dBy(w)=-{By(w)dw,
which gives the scaling layd).

dard Gaussian distribution of zero mean and unit variance.
The weight of the node is chosen to tabitrarily) w=(¢
+2)/4. Simulations indicate thaBy,(w) again exhibits the
exponential scaling behavior, as shown in Fig)Zor three
networks, all ofN=4000 nodes but with different values of

Numerically, optimal paths can be found by using them (2, 7, and 12, corresponding to linear fits with decreasing

Dijkstra’s algorithm[13,19. Figure 1a) shows the exponen-
tial relation betweer,(w) andw for a weighted scale-free
network ofN=4000 nodes and for three valuesrof 2, 10,
and 20(with decreasing slop&sSince{ increases with\,

slopes. We also observe that for large valuesrof the ex-
ponential rate/ increases according to an approximate alge-
braic relation: /~m¢?, as shown in Fig. @), where ¢
=0.46+0.06 for this particular network configuration. These

~mN, we expect it to increase with the basic network pa-results are similar to those in Fig(a), suggesting that the

rameterm as well. This behavior is shown in Fig.(,
where we observe that~m¢? (¢=0.88+0.05 for this par-
ticular network configuration Numerical computations also
indicate thatB,,(w) is proportional toN. We can thus write
Bw(w)=c,,Ne " for largew, wherec,,>1 is a constant de-
pending onm. For a network with no closed loofsn=1),

exponential scaling of the betweenness with weight is gen-
eral.

We now turn to the scaling law2). To give a plausible
argument for its validity, we first consider two analyzable,
weighted scale-free networks, both having a treelike struc-
ture, as shown in Figs.(8 and 3b), which are constructed

we expectZ=0 because an increase in the weight of a nodaising the BA model wittm=1. In Fig. 3a), all optimal paths
does not change the optimal paths passing through it. Thisetween pairs of nodes pass through a n&degardless of
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FIG. 2. (a) Scaling of the betweenne&g,(w) with w for m=2, [
7, and 12 for a weighted scale-free network Nv¥4000 nodes, 10'E
where the distribution of weights in the network is Gaussian. For
each value ofn, the data were averaged over 5000 runs. The slopes
of three lines are approximately —3.1, —9.6, and -12.5nfer2, 7, 10 g —— e e
and 12, respectivelyb) Dependence of on m. 10 10 10 10

0

. . FIG. 4. Algebraic scaling betweeBy (k) andk for a weighted
the value of its weight. The betweenness of a n¥ds thus scale-free network witin=2 andN=10 000. The value of the scal-

B(k)=k(k=1)/2 (k=N). We_ therefore obtaiB(k) ~ k2 for k ing exponent isvr= 1.5. A similar scaling relation is obtained for the
>1. On the other hand, Fig(l3 represents a scale-free tree ¢orresponding nonweighted network, where=1.6, as shown in
with the smallest possible value af The betweenness of a e inset.
node X is B(k)=(k-1)(k-2)/2+(k-1)[N-(k-1)]. For N
> k> 1 we haveB(k) ~ k. We thus see for the scale-free trees
the scaling oB (k) with k is algebraic and the value of the Intuitively, for two scale-free networks with identical pa-
scaling exponent falls between 1 and 2. rameters, one nonweighted and another weighted, we expect
The above argument can be extended to a general scalhe value ofa for the weighted network to be smaller than
free network withm=2, where all nodes are connecteddo that for the nonweighted one. This can be seen as follows. In
as in Fig. 3a). Many pairs of nodes excluding may be anonweighted scale-free network, the optimal paths between
connected as well. The largest possible value of the betweeipairs of nodes are exactly the same as the shortest paths
ness in this network can be obtained when all optimal pathbetween them. Shortest paths tend to pass through nodes
between pairs of nodes pass throughas in Fig. 3a). We  having a relatively large numbec of links, so we expect
obtain B(k) ~ k? for X. Bk (k) to increase withk. For a weighted scale-free network,
Figure 4 shows (k) versusk on a logarithmic scale for we expect the same to hold except with one complication:
a weighted scale-free network with=2 andN=10 000. The optimal paths tend to pass through nodes having small
values of the betweenness were averaged over 100 randofteight as well as nodes having a large number of links. That
realizations of the network. We observe a robust algebraits, for nodes having a small number of links, some optimal
scaling with the exponent~ 1.5 (indicated by the straight paths tend to pass through them if they have small weight.
line). The inset shows a similar plot for the corresponding
nonweighted network, the algebraic scaling exponent of
which is «=1.6. In this case, for a given pair of nodes, if
there are several optimal paths, we choose one at random. ,,|
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FIG. 5. Algebraic scaling exponeiat vs m for a nonweighted
scale-free networkupper trace and the corresponding weighted

FIG. 3. Two treelike, scale-free networks with=1, which can  one(lower tracg. The data were obtained using 100 realizations of
be used to derive the algebraic scaling Iy the network.
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The value ofB(k) in a weighted scale-free network tends to dicted by our heuristic argument using scale-free trees.
be smaller for largek than that in the corresponding non-  In summary, we have introduced a class of weighted
weighted scale-free network, but it can be a bit larger forscale-free networks, motivated by the consideration that dif-
small k. Thus the value of the scaling exponeatin  ferent nodes and links may play distinct functional roles in a
weighted scale-free networks is generally less than that ifealistic complex network. We use the quantity betweenness
nonweighted networks. to characterize weighted networks and discovered exponen-
For a nonweighted scale-free network, as the network paga| and algebraic scaling laws for the betweenness versus the
rameterm is increased, the betweenness can become signif{,veight and the degree, respectively. While our method to
cantly larger, particularly for largk values. Thus we expect assign weights is straightforward, for a realistic network this
the value ofa to increase withm, at least fomnot too large.  can be done by using physical quantities of particular interest
For a weighted network, the compensating effect of then terms of the functional role of the network. Our studies
weight in reducing the value of the betweenness suggestfay provide insights as to how to identify the influential

that the scaling exponentis likely to remain constanta®  nodes in terms of not only the degree distribution but also the
is increased. These behaviors are shown in Fig. 5, where fynctional weight.

versusm is plotted for two networks oN=10 000 nodes,

one nonweightedthe upper traceand another weighte@dhe This work was supported by AFOSR under Grant No.
lower trace. It is interesting to note that in all cases, the F49620-01-1-0317. Y.C.L. was also supported by NSF under
value of « is apparently bounded between 1 and 2, as preGrant No. ITR-0312131.
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