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To account for possible distinct functional roles played by different nodes and links in complex networks, we
introduce and analyze a class of weighted scale-free networks. The weight of a node is assigned as a random
number, based on which the weights of links are defined. We utilize the concept ofbetweennessto characterize
the weighted networks and obtain the scaling laws governing the betweenness as functions both of the weight
and of the degree. The scaling results may be useful for identifying influential nodes in terms of physical
functions in complex networks.
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Complex networks arise in many natural systems of fun-
damental importance and they are also an essential part of
modern society[1–6]: examples of the former are many bio-
logical networks while the latter include the Internet, electri-
cal power grids, transportation networks, etc. Studies of
complex networks have become a recent field of tremendous
interest since the discoveries of the small-world[7] and the
scale-free properties[8].

A basic assumption in most existing works on complex
networks is that all links and nodes are identical in terms of
their functional roles in the network[9]. This assumption
may not be valid for a realistic network because different
links and nodes can contribute differently to the overall per-
formance of the network[10–16]. For instance, in a neural
network, links, which are dendritic connections, can have
very different capabilities in terms of transmitting electrical
signals. Nodes, which are neurons, can also have different
electrical and chemical properties and thus be very distinct in
terms of their abilities to process information. In the Internet,
the capabilities to process and transmit information of com-
puters(nodes) can have a wide distribution. It is thus impor-
tant to studyweightedcomplex networks in which nodes and
links are not treated on equal footing. Although the need to
study these more realistic networks has been pointed out
recently [4,13,14], so far there has not been much work in
this direction.

In this paper, we introduce a class of weighted scale-free
networks. In such a network, each node is assigned a random
weight, which is the realization of random variableW in
[0,1]. Given a pair of nodes with different weights, the
weight of the link connecting them can be defined accord-
ingly. Our interest is to develop proper characterizations of
such weighted networks. For this purpose we use the concept
of betweennessof a node, first proposed by Newman[13],
which is the total number of optimal paths(to be defined
below) between any pairs of nodes passing through this
node. Given a random distribution of weights in the network,
our question is how the betweenness scales with the weight
w. A related issue concerns the scaling relation between the
betweenness andk, wherek is the realization of the degree
variableK that measures the number of links of node in the

network. In general, we write the betweenness asBsw,kd,
with the correspondingmarginal betweennesses:BWswd
=e1

kmaxBsw,kddk and BKskd=e0
1Bsw,kddw, wherekmax,` is

the maximum number of links of node in a finite but large
network. Our main results are the following.(1) The weight-
based betweenness obeys the following exponential scaling
relation:

BWswd , Ne−zw for largew, s1d

where the exponential ratez scales withm, the average num-
ber of new links acquired by the network, asz,mf (f is a
constant). (2) The link-based betweenness obeys the follow-
ing algebraic scaling law:

BKskd , ka, s2d

where 1,a,2. SinceW and K are independent random
variables, we haveBsw,kd,Ne−zwka for largew andk. Sup-
pose nodes with large values of betweenness are more influ-
ential, result(1) implies that, due to the natural process of
evolution of the network, nodes with large values of weights
may be less influential. On the other hand, nodes with large
values ofk are generally more influential, as can be expected
intuitively.

Scale-free networks are characterized by algebraic behav-
ior in the degree distributionPskd. This property isdynamic
because it is the consequence of the natural evolution of the
network. The ground-breaking work by Barabási and Albert
[8] demonstrates that the algebraic behavior is due to two
basic mechanisms: growth and preferential attachment,
where the latter means that the probability for a new node to
be connected to an existing node is proportional to the num-
ber of links that this node already has.

Our weighted scale-free network is constructed as fol-
lows. We first generate a regular(nonweighted) scale-free
network based on the Barabási-Albert(BA) model[8,17]. In
particular, we start with a small numberm of nodes and add
a new node withm links at each time step following the
preferential attachment rule, while allowing only one link
between any pair of nodes. Aftert (large) time steps, we
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obtain a network withN= t+m nodes andNl =mt links. To
convert this nonweighted scale-free network into a weighted
one, we choose a nodei at random and assign the number
“1” to it, then randomly choose another nodej among those
that do not yet have assigned numbers, and assign the num-
ber “2” to this node, and continue until all nodes are assigned
a number(between 1 andN). The weight of a node is defined
to be its assigned number divided byN, which is a fractional
number between zero and unity. The weightdij of a link l i j
connecting a pair of nodes(i and j) is defined to bedij
=swi +wjd /2. The weightdij associated with the linkl i j may
be interpreted, in a computer network, for instance, as the
time required to transfer a data packet through this link.

Recall that the betweenness of a nodei is the total number
of optimalpaths between all pairs of nodes that pass through
the nodei. Given a particular pair of nodes, sayA andB, the
optimal path is one that minimizes the sumoA

Bdij . The opti-
mal path between a pair of nodes is in general different from
the shortest path connecting them[18]. To obtain the scaling
law (1), we assume that nodei has weightw and letSdenote
the optimal path betweenA and B that passes through this
node. Say an infinitesimal increase occurs in the weight of
the node fromw to w+dw, while the weights of all other
nodes in the network remain unchanged. Then there is a
probability that the pathS is no longer an optimal path
throughi because the increase of the weight makes the opti-
mal path lengthLS larger bydw than before. If there exists at
least one optimal path whose length is betweenLS and LS
+dw which does not pass through nodei before its weight is
changed, then afterdw increase in weight this new path can
become the optimal path betweenA and B. Let z be the
probability that an existing optimal pathS disappearsat the
node i when its weight increases fromw to w+dw. As this
probability is determined by whether there is at least one
optimal path of length betweenLS,L,LS+dw in the
weighted network, we see thatz does not depend on the
value ofw and it can be regarded as a constant. Apparently,
z will change if the network topology is altered. For instance,
if the total numberN of nodes in a weighted scale-free net-
work is fixed, there are generally many more paths connect-
ing two nodes with larger total numberNl of links than those
with a smaller valueNl. Thus we expectz to increase with
Nl, which can be verified numerically. Givenz, the decrease
in the betweenness of a nodei is dBWswd=−zBWswddw,
which gives the scaling law(1).

Numerically, optimal paths can be found by using the
Dijkstra’s algorithm[13,19]. Figure 1(a) shows the exponen-
tial relation betweenBWswd andw for a weighted scale-free
network ofN=4000 nodes and for three values ofm: 2, 10,
and 20(with decreasing slopes). Sincez increases withNl
<mN, we expect it to increase with the basic network pa-
rameterm as well. This behavior is shown in Fig. 1(b),
where we observe thatz,mf (f=0.88±0.05 for this par-
ticular network configuration). Numerical computations also
indicate thatBWswd is proportional toN. We can thus write
BWswd=cmNe−zw for largew, wherecm.1 is a constant de-
pending onm. For a network with no closed loopssm=1d,
we expectz=0 because an increase in the weight of a node
does not change the optimal paths passing through it. This

has been verified numerically. We then haveBWswd=c1N
=const.1. In general, if BWswd.1, the probability that
some optimal paths do pass through a node with weightw is
close to one. Thus, form=1 andN@1, we haveBWswd@1,
indicating that many optimal paths pass through every node
in the corresponding weighted scale-free network. Form
ù2 so that the resulting network possesses closed loops,
optimal paths passing through a nodei can disappear with
nonzero probability. In this case, we expectBWswd,1 for
large values ofw. There is thus a nonzero probability that no
optimal path exists through a node. Letwz be the value ofw
for which Bswd=1, we havewz=lnscmNd /z. Let Nc be the
value ofN for which cmNe−z=1. If N.Ncs=ez /cmd, we have
BWswd.1 for all values ofw becausewz.1. However, if
N,Nc, BWswd,1 may happen for largew. For instance, for
m=2 we find numerically thatc2.15 andz.3.25, which
gives Nc.2. For m=10 andN=4000, we obtainc10.155,
z.17.7, andwz.0.75. There must then be many nodes
through which no optimal paths pass.

Note that Fig. 1 is obtained with uniform distribution of
weights. Does the exponential scaling of the betweenness
with weight depend on this distribution? To answer this ques-
tion, we consider Gaussian weight distribution. In particular,
for each node, a random numberj is drawn from the stan-
dard Gaussian distribution of zero mean and unit variance.
The weight of the node is chosen to be(arbitrarily) w=sj
+2d /4. Simulations indicate thatBWswd again exhibits the
exponential scaling behavior, as shown in Fig. 2(a) for three
networks, all ofN=4000 nodes but with different values of
m (2, 7, and 12, corresponding to linear fits with decreasing
slopes). We also observe that for large values ofm, the ex-
ponential ratez increases according to an approximate alge-
braic relation: z,mf, as shown in Fig. 2(b), where f
=0.46±0.06 for this particular network configuration. These
results are similar to those in Fig. 1(a), suggesting that the
exponential scaling of the betweenness with weight is gen-
eral.

We now turn to the scaling law(2). To give a plausible
argument for its validity, we first consider two analyzable,
weighted scale-free networks, both having a treelike struc-
ture, as shown in Figs. 3(a) and 3(b), which are constructed
using the BA model withm=1. In Fig. 3(a), all optimal paths
between pairs of nodes pass through a nodeX regardless of

FIG. 1. (a) Scaling of the betweennessBWswd with w for m=2,
10, and 20 for a weighted scale-free network ofN=4000 nodes. For
each value ofm, the data were averaged over 5000 runs. The slopes
of three lines are approximately −3.3, −17.7, and −33.0 form=2,
10, and 20, respectively.(b) Dependence ofz on m.

PARK, LAI, AND YE PHYSICAL REVIEW E 70, 026109(2004)

026109-2



the value of its weight. The betweenness of a nodeX is thus
Bskd=ksk−1d /2 sk=Nd. We therefore obtainBskd,k2 for k
@1. On the other hand, Fig. 3(b) represents a scale-free tree
with the smallest possible value ofa. The betweenness of a
node X is Bskd=sk−1dsk−2d /2+sk−1dfN−sk−1dg. For N
@k@1 we haveBskd,k. We thus see for the scale-free trees
the scaling ofBKskd with k is algebraic and the value of the
scaling exponent falls between 1 and 2.

The above argument can be extended to a general scale-
free network withmù2, where all nodes are connected toX
as in Fig. 3(a). Many pairs of nodes excludingX may be
connected as well. The largest possible value of the between-
ness in this network can be obtained when all optimal paths
between pairs of nodes pass throughX, as in Fig. 3(a). We
obtainBskd,k2 for X.

Figure 4 showsBKskd versusk on a logarithmic scale for
a weighted scale-free network withm=2 andN=10 000. The
values of the betweenness were averaged over 100 random
realizations of the network. We observe a robust algebraic
scaling with the exponenta<1.5 (indicated by the straight
line). The inset shows a similar plot for the corresponding
nonweighted network, the algebraic scaling exponent of
which is a<1.6. In this case, for a given pair of nodes, if
there are several optimal paths, we choose one at random.

Intuitively, for two scale-free networks with identical pa-
rameters, one nonweighted and another weighted, we expect
the value ofa for the weighted network to be smaller than
that for the nonweighted one. This can be seen as follows. In
a nonweighted scale-free network, the optimal paths between
pairs of nodes are exactly the same as the shortest paths
between them. Shortest paths tend to pass through nodes
having a relatively large numberk of links, so we expect
BKskd to increase withk. For a weighted scale-free network,
we expect the same to hold except with one complication:
optimal paths tend to pass through nodes having small
weight as well as nodes having a large number of links. That
is, for nodes having a small number of links, some optimal
paths tend to pass through them if they have small weight.

FIG. 5. Algebraic scaling exponenta vs m for a nonweighted
scale-free network(upper trace) and the corresponding weighted
one(lower trace). The data were obtained using 100 realizations of
the network.

FIG. 2. (a) Scaling of the betweennessBWswd with w for m=2,
7, and 12 for a weighted scale-free network ofN=4000 nodes,
where the distribution of weights in the network is Gaussian. For
each value ofm, the data were averaged over 5000 runs. The slopes
of three lines are approximately −3.1, −9.6, and −12.5, form=2, 7,
and 12, respectively.(b) Dependence ofz on m.

FIG. 3. Two treelike, scale-free networks withm=1, which can
be used to derive the algebraic scaling law(2).

FIG. 4. Algebraic scaling betweenBKskd and k for a weighted
scale-free network withm=2 andN=10 000. The value of the scal-
ing exponent isa<1.5. A similar scaling relation is obtained for the
corresponding nonweighted network, wherea<1.6, as shown in
the inset.
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The value ofBKskd in a weighted scale-free network tends to
be smaller for largek than that in the corresponding non-
weighted scale-free network, but it can be a bit larger for
small k. Thus the value of the scaling exponenta in
weighted scale-free networks is generally less than that in
nonweighted networks.

For a nonweighted scale-free network, as the network pa-
rameterm is increased, the betweenness can become signifi-
cantly larger, particularly for largek values. Thus we expect
the value ofa to increase withm, at least form not too large.
For a weighted network, the compensating effect of the
weight in reducing the value of the betweenness suggests
that the scaling exponenta is likely to remain constant asm
is increased. These behaviors are shown in Fig. 5, wherea
versusm is plotted for two networks ofN=10 000 nodes,
one nonweighted(the upper trace) and another weighted(the
lower trace). It is interesting to note that in all cases, the
value of a is apparently bounded between 1 and 2, as pre-

dicted by our heuristic argument using scale-free trees.
In summary, we have introduced a class of weighted

scale-free networks, motivated by the consideration that dif-
ferent nodes and links may play distinct functional roles in a
realistic complex network. We use the quantity betweenness
to characterize weighted networks and discovered exponen-
tial and algebraic scaling laws for the betweenness versus the
weight and the degree, respectively. While our method to
assign weights is straightforward, for a realistic network this
can be done by using physical quantities of particular interest
in terms of the functional role of the network. Our studies
may provide insights as to how to identify the influential
nodes in terms of not only the degree distribution but also the
functional weight.
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